skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Seong Hyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Core-collapse supernovae (CCSNe) may have contributed a significant amount of dust in the early Universe. Freshly formed coolant molecules (e.g., CO) and warm dust can be found in CCSNe as early as ∼100 d after the SN explosion, allowing the study of their evolution with time series observations. Aims.Through study of the Type II SN 2023ixf, we aim to investigate the temporal evolution of the temperature, velocity, and mass of CO and compare them with other CCSNe, exploring their implications for the dust formation in CCSNe. From observations of velocity profiles of lines of other species (e.g., H and He), we also aim to characterize and understand the interaction of the SN ejecta with preexisting circumstellar material (CSM). Methods.We present a time series of 16 near-infrared spectra of SN 2023ixf from 9 to 307 d, taken with multiple instruments: Gemini/GNIRS, Keck/NIRES, IRTF/SpeX, and MMT/MMIRS. Results.The early (t ≲ 70 d) spectra indicate interaction between the expanding ejecta and nearby CSM. Att ≲ 20 d, intermediate-width line profiles corresponding to the ejecta-wind interaction are superposed on evolving broad P Cygni profiles. We find intermediate-width and narrow lines in the spectra untilt ≲ 70 d, which suggest continued CSM interaction. We also observe and discuss high-velocity absorption features in Hαand Hβline profiles formed by CSM interaction. The spectra contain CO first overtone emission between 199 and 307 d after the explosion. We modeled the CO emission and found the CO to have a higher velocity (3000–3500 km s−1) than that in Type II-pec SN 1987A (1800–2000 km s−1) during similar phases (t = 199 − 307 d) and a comparable CO temperature to SN 1987A. A flattened continuum at wavelengths greater than 1.5 μm accompanies the CO emission, suggesting that the warm dust is likely formed in the ejecta. The warm dust masses are estimated to be on the order of ∼10−5 M
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract We present early multiwavelength photometric and spectroscopic observations of the Type IIb supernova SN 2024uwq, capturing its shock-cooling emission phase and double-peaked light-curve evolution. Early spectra reveal broad Hα(v ∼ 15,500 km s−1) and HeIP Cygni profiles of similar strengths. Over time the HeIlines increase in strength while the Hαdecreases, consistent with a hydrogen envelope (Menv = 0.7–1.35M) overlying helium-rich ejecta. Analytic modeling of early shock cooling emission and bolometric light analysis constrains the progenitor to a partially stripped star with radiusR = 10–60R, consistent with a blue/yellow supergiant with an initial zero-age main-sequence mass of 12–20Mlikely stripped via binary interaction. SN 2024uwq occupies a transitional position between compact and extended Type IIb supernovae, highlighting the role of binary mass transfer efficiency in shaping a continuum of stripped-envelope progenitors. Our results underscore the importance of early UV/optical observations to characterize shock breakout signatures critical to map the diversity in evolutionary pathways of massive stars. Upcoming time-domain surveys, including Rubin Observatory’s LSST and UV missions like ULTRASAT and UVEX, will revolutionize our ability to systematically capture these early signatures, probing the full diversity of stripped progenitors and their explosive endpoints. 
    more » « less
    Free, publicly-accessible full text available September 10, 2026
  3. Abstract We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising K -band continuum flux density longward of ∼2.0 μ m, and a late-time optical spectrum at day 259 shows strong [O i ] 6300 and 6364 Å emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of ∼2 × 10 −5 M ⊙ and a dust temperature of ∼900–1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation-hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C–O star masses of 3.93 and 5.74 M ⊙ , but with the same best-fit 56 Ni mass of 0.11 M ⊙ for early times (0–70 days). At late times (70–300 days), optical light curves of SN 2021krf decline substantially more slowly than those expected from 56 Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta with the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar. 
    more » « less